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A Two-Stage Attentive Network for Single Image
Super-Resolution

Jiqing Zhang, Chengjiang Long∗, Yuxin Wang∗, Haiyin Piao, Haiyang Mei, Xin Yang∗, Baocai Yin

Abstract—Recently, deep convolutional neural networks
(CNNs) have been widely explored in single image super-
resolution (SISR) and contribute remarkable progress. However,
most of the existing CNNs-based SISR methods do not adequately
explore contextual information in the feature extraction stage
and pay little attention to the final high-resolution (HR) image
reconstruction step, hence hindering the desired SR performance.
To address the above two issues, in this paper, we propose a two-
stage attentive network (TSAN) for accurate SISR in a coarse-to-
fine manner. Specifically, we design a novel multi-context attentive
block (MCAB) to make the network focus on more informative
contextual features. Moreover, we present an essential refined
attention block (RAB) which could explore useful cues in HR
space for reconstructing fine-detailed HR image. Extensive eval-
uations on four benchmark datasets demonstrate the efficacy of
our proposed TSAN in terms of quantitative metrics and visual
effects. Code is available at https://github.com/Jee-King/TSAN.

Index Terms—single image super-resolution, deep learning,
attention mechanism, multi-context block, two-stage, cross-
dimension interaction.

I. INTRODUCTION

S INGLE Image Super-Resolution (SISR) refers to reconstruct-
ing a visually pleasing high-resolution (HR) image from a
low-resolution (LR) one. It is a fundamental topic in the
computer vision community and is an intense demand for
diverse applications such as medical imaging, security, and
surveillance imaging. The key to SISR problem lies in how to
effectively extract useful information from the input image
and how to leverage extracted features to reconstruct the
fine-detailed HR image. Since multiple HR images can be
downsampled to the same LR image and it is a one-to-many
mapping relation to recover HR images from one LR image,
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Fig. 1. Visual comparison between different algorithms on img092 from
Urban100 [7] with scale factor ×3. Our TSAN obtains better visual quality
and recovers more image details compared with other state-of-the-art SR
methods.

SISR is an ill-posed and still challenging problem in spite that
numerous methods have been proposed.

As a cutting-edge technique, deep-learning especially con-
volutional neural networks (CNNs) have been widely used to
handle SISR [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [22], [24], [25]. In spite
of remarkable progress achieved in SISR, existing CNN-based
methods still face with three main limitations: (1) for feature
extraction, early methods first apply interpolation strategies
(e.g., bicubic) to process the input image to the desired size and
then use CNNs to extract features from the upsampled image.
As the interpolation often results in visible reconstruction
artifacts, some models extract raw features directly from the
input LR image and struggle to enhance the ability of feature
extraction by simply deepening/widening the network. These
methods blindly increase the depth of the network to enhance
the performance of the network but ignore taking full use
of the contextual information. As the depth of the network
increases, the features gradually disappear in the process of
transmission; (2) all features are treated equally in these meth-
ods, which weakens the discrimination ability of the network
to extract more informative features. Although approaches [6],
[26] retain some detailed information with channel attention,
they struggle in preserving informative textures and restoring
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natural details since they ignore to explore the cross-dimension
interaction; (3) for HR image reconstruction process, most
models reconstruct HR image in one upsampling step at the
end of the network, using features learned only in LR space.
This setting would increase the difficulties of training for large
scaling factors and make the network failed to explore useful
cues in HR space for reconstructing visually pleasant HR
image.

To address the above limitations, we propose a two-stage
attentive network (TSAN) for accurate SISR in this paper. As
illustrated in Figure 2, TSAN consists of two stages to solve
the SISR problem in a coarse-to-fine manner. At LR-stage,
we adopt a dilated residual block (DRB) as a fundamental
unit to efficiently extract contextual features and further, based
on DRB, propose a multi-context attentive block (MCAB)
to make the network focus on more informative contextual
features. Multiple MCABs are leveraged to extract attentive
contextual features used for reconstructing an initial SR result.
At HR-stage, we propose a refined attention block (RAB) to
refine the initial SR result to a more fine-detailed one by
exploring useful cues in HR space.

Specifically, the DRB pushes the boundaries of conventional
cascading and parallel strategies for feature extraction, which
could simultaneously distill features with different receptive
fields and different context characteristics. Dilated convolu-
tions are adopted in DRB to further explore more contextual
information through the larger receptive field. Based on the
compact yet powerful DRB, the well-designed MCAB could
distill attentive contextual features by introducing the atten-
tion mechanism. MCAB contains two branches: a contextual
feature extraction branch in which several DRBs are stacked
in a dense connection manner to enhance the capability of
the network to extract contextual features, and an attention
branch that consists of a cutting-splicing block (CSB), a 1st-
order attention triplet, and a 2nd-order attention triplet. The
CSB is proposed to extract abundant structure cues and self-
similarities in local and global regions simultaneously. The
purpose of the 1st-order triplet and the 2nd-order triplet is
to enhance the discriminative learning ability of the network
through the interaction between spatial and channel dimen-
sions. Unlike DRB and MCAB, RAB is designed to explore
available cues in HR space to reconstruct fine-detailed HR
image. The intuition behind the RAB is that the information
in LR space is limited, and we believe features extracted in
HR space could benefit a better recovery of images details.
As shown in Figure 1, our TSAN obtains better visual quality
and recovers more image details than other state-of-the-art SR
methods.

To sum up, the main contributions of this paper are three-
fold: (1) we propose a two-stage TSAN which could address
the SISR problem in a coarse-to-fine manner; (2) we design
a novel multi-context attentive block (MCAB) with cross-
dimension interaction; (3) our TSAN outperforms the state-of-
the-art SISR methods in terms of accuracy and visual effects.

II. RELATED WORK
The related work can be divided into two categories, i.e.,

single image super-resolution and attention mechanisms.

A. Single image super-resolution

Single image super-resolution has been extensively studied
in the past few decades. Numerous SISR methods have been
proposed, ranging from early conventional methods [27],
[28], [29], [30] and traditional learning-based methods [7],
[31], [32], [33], to recent deep learning-based methods. In
particular, deep learning-based methods have led to dramatic
improvements in SISR due to the powerful representational
capability of deep networks. In this section, we mainly detail
the most relevant deep learning-based SISR methods that can
be categorized into three types, depending on how the network
approaches the SR problem by either pre-upsampling, post-
upsampling, or sampling.

For pre-upsampling based methods such as SRCNN [8],
VDSR [34], DRCN [35], DRRN [36] and MemNet [37], the
upsampling operator, i.e., bicubic interpolation, often results
in visible reconstruction artifacts. Moreover, as these methods
only learned the mapping in HR space, the raw features
cannot be extracted from the original LR image to enhance
the representational power of the network.

Post-upsampling based methods like FSRCNN [38],
IDN [39], SRResNet [40], EDSR [1], MSRN [41], RCAN [6],
RDN [2], CARN [42], RNAN [5], OISR [4], SAN [26],
DNCL [43], and IMSSRnet [44], directly extracted features
from input LR images and then used the features merely
extracted in LR space to construct the HR image by a
transposed/sub-pixel convolution layer. However, as these
methods focused on extracting features in LR space, a deeper
or wider complex network (e.g., EDSR [1] and RDN [2]) was
required to obtain sufficient information, for the purpose of
reconstructing fine-detailed HR images. Besides, the setting
of one-step upsampling at the end of the network would also
increase the difficulties of training large scaling factors.

Regarding sampling based methods [45], [46], [47], differ-
ent sampling strategies were adopted in the network for some
specific purposes. For example, LapSRN [45] progressively
reconstructed the SR predictions to ease the difficulties of
training for large scaling factors. Due to limited available
features in the LR space, DBPN [46] proposed an iterative up-
and-down sampling approach that could obtain HR features in
different depths for SR reconstruction. It is worth mentioning
that our proposed TSAN is sampling based. We leverage
well-designed MCABs to efficiently extract abundant attentive
contextual features with long-range dependencies from the
input image in LR space. We also distill HR features from
the initial coarse HR image through RAB, aiming at refining
more local details.

B. Attention mechanisms

Attention in human perception generally means that human
visual systems adaptively process visual information and focus
on salient areas. Attention mechanisms have been widely
applied in many tasks [48], [49], [50], [51], including image
super-resolution [6], [26], [52], [21], [53]. Zhang et al. [6]
introduced attention mechanisms into the residual in residual
structure to adaptively rescale channel-wise features for image
super-resolution. Dai et al. [26] proposed a second-order
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Fig. 2. (a) The overview of our proposed TSAN. TSAN is a two-stage network which reconstructs SR image in a coarse-to-fine manner. In LR-stage, MCABs
are leveraged to extract attentive contextual features used for reconstructing an initial SR result. In HR-stage, RAB refines the initial SR result to a more
fine-detailed one by exploring useful cues in HR space. (b) Our proposed Multi-Context Attentive Block (MCAB). (c) Our proposed Refined Attention Block
(RAB). (d) the Dilated Residual Block (DRB).

channel attention module to learn feature interdependencies
by global covariance pooling for more discriminative repre-
sentations. Hu et al. [21] constructed a set of channel-wise and
spatial attention residual blocks and stacked them in a chain
structure to dynamically modulate the multi-level features in
global and local manners. Du et al. [52] extracted orientation-
aware features and combined them by a channel-wise attention
mechanism to generate more distinctive features. Wu et al. [53]
exploited the advantages of multi-scale and attention mecha-
nisms in SR tasks. However, the inter-dependence between
the channel dimension and the spatial dimension is absent in
the above-mentioned SISR methods when computing attention
on these single pixel channels. Therefore, we propose the
1st-order and 2nd-order triplet attention to focus on inter-
dependencies among channel dimension and different spatial
dimensions.

III. METHODOLOGY

A. Overview

As illustrated in Figure 2, our proposed TSAN consists
of two stages to solve the SISR problem in a coarse-to-fine
manner. At LR-stage, several multi-context attentive blocks
(MCABs) are proposed to efficiently extract sufficient con-
textual features from the input LR image and construct an
initial SR result based on the extracted features. At HR-stage, a
simple yet effective refined attention block (RAB) is proposed
to further refine the coarse SR result obtained in LR-stage to
a more fine-detailed one.

Given an input LR image ILR, we first extract shallow
features Fs by

Fs = δ(C1×1(ILR)), (1)

where Ck×k represents convolution operation where kernel size
is k × k; δ denotes the rectified linear unit (ReLU) activation

function. Then, Fs is fed to stacked multiple MCABs to distill
attentive contextual features of different levels,

Fd =Md(Fd−1) =Md(Md−1(· · ·M1(Fs) · · · )), (2)

whereMd denotes the d-th MCAB and Fd denotes the output
of the d-th MCAB. Here we embed three MCABs, i.e., d = 3.
Later, all Fi, i ∈ [1, d] are fused by applying a convolution
layer upon the concatenation, i.e.,

Ffusion = C1×1([F1,F2, · · · ,Fd]), (3)

where [·] denotes the concatenation operation. After that, we
can get an initial SR result by applying a convolution layer
upon the upsampled element-wise addition of the aggregated
hierarchical features Ffusion and the raw features Fs, i.e.,

ISR
1 = C1×1(κ(Ffusion + Fs)), (4)

where κ denotes the sub-pixel operation.
Then we design a refined attention block (RAB) (denoted as
R) to refine the initial SR result by modeling the local details
in HR space in the form of residual:

ISR
2 = R(ISR

1 ). (5)

Finally, these two stages are optimized jointly with the loss
function defined as

L = w1Lm(ISR
1 , IGT ) + w2Lm(ISR

2 , IGT ), (6)

where IGT is the ground truth image, Lm is the mean absolute
error (MAE) loss, and w1 and w2 are the balancing parameters.

B. Multi-Context Attentive Block

As not all features contribute a positive effect to the de-
sired SR result, we propose the multi-context attentive block
(MCAB) to distill attentive contextual features with long-range
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dependencies for high-quality SR reconstruction. Specifically,
MCAB contains two branches: a contextual feature extraction
branch (the lower part of Figure 2(b)) and an attention branch
(the upper part of Figure 2(b)).

1) the contextual feature extraction branch: In the con-
textual feature extraction branch, the Dilated Residual Block
(DRB) is adopted as the fundamental unit to explore more
context cues by enlarging receptive field, and simultaneously
extract features with different contextual characteristics for
reconstructing visually pleasant HR image.

Cascading several convolution layers usually is an effective
way to enlarge the receptive fields. In the cascading structure,
as shown in Figure 3(a), as a deeper layer accepts the output
of a shallower layer, large receptive fields can be produced
efficiently. Then the output of each layer would be fused to
obtain features covering different scales of receptive fields.
Mathematically,

Fco =Fci + C1×1([D1
3×3(F ′),D2

3×3(F ′),
D3

3×3(F ′),D4
3×3(F ′)]),

F ′ =C1×1(Fci),

(7)

where Fci and Fco are the input and output of the cascaded
network. Dn

k×k represents dilated convolution operation where
kernel size is k×k, and n represents the number of consecutive
use of the same dilated convolution on F ′. On the other
hand, employing a parallel structure can harvest features with
different context characteristics. In the parallel structure, as
shown in Figure 3(b), as multiple different convolution layers
accept the same input and their outputs are concatenated
together, the obtained output is indeed a sampling of the input
using different contexts. Mathematically,

Fpo =Fpi + C1×1([D1
3×3(F ′),D1

3×3(F ′),
D1

3×3(F ′),D1
3×3(F ′)]),

F ′ =C1×1(Fpi),

(8)

where Fpi and Fpo are the input and output of the parallel
network.

To simultaneously distill features with different receptive
fields and different context characteristics, we incorporate the
advantages of both the cascading and parallel strategies and
propose a novel compact structure shown in Figure 2(d). The
proposed DRB consists of two branches used for extracting
features with different contextual characteristics. Each branch
contains two cascaded convolution layers used for distilling
features with different receptive fields. In order to obtain
a larger receptive field without increasing the number of
convolutions and parameters, we adopt dilated convolution.
Finally, we concatenate all features of different branches and
depths, and fuse them with input by a residual operation. For
a clear presentation, DRB can be formulated as:

Fd−o =Fd−i + C1×1([D1
3×3(F ′),D1

3×3(F ′),
D2

3×3(F ′),D2
3×3(F ′)]),

F ′ =C1×1(Fd−i),

(9)

where Fd−i and Fd−o denote the input and output of DRB,
respectively. The number of output channels for all dilated
convolutionlayer in DRB is 64.
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Fig. 3. (a) the cascaded structure; (b) the parallel structure.

We further stack multiple DRBs in a dense connection
manner, so that each DRB in MCAB has access to all the
previous DRBs’ output and could fully utilize them to further
distill higher-level contextual features. We then concatenate the
outputs of each DRB and integrate them by a 1×1 convolution.
The whole process can be expressed as:

Fc
d = C1×1([Fd−1,F ′d,1, · · · ,F ′d,e]), (10)

where Fc
d is the output of contextual feature extraction branch

in d-th MCAB, F ′d,e denotes the output of e-th DRB in d-th
MCAB. We use six DRBs in each MCAB, i.e., e = 6, and the
dilation rates s of these six DRBs are set to 1, 2, 3, 3, 2, and
1, respectively.

2) the attention branch: The attention branch is designed
to make the network focus on more informative features and
enhance the discriminative learning ability of the network
by considering long-range feature correlations in spatial and
channel dimensions. As shown in Figure 2(b), this branch
contains three parts: a cutting-splicing block (CSB), a 1st-
order triplet, and a 2nd-order triplet.

CSB. To simultaneously capture the spatial dependencies
in the local patch and global diagram, we proposed a novel
cutting-splicing block (CSB) to extract local patterns and
exploit the abundant structure cues and self-similarities in
global regions. Formally, the features with a size of C×H×W
first be cut into n × n cells (n = 2 in Figure 2(b)), and then
these cells are concatenated and fed into a 3× 3 convolution
to extract and aggregate local and non-local information. After
that, we splice n × n cells back into C × H ×W features.
This process can be formulated as:

FCSB
d = Os(C3×3(Oc(Fd−1))), (11)

where Os denotes splicing operation, Oc denotes cutting
operation, and FCSB

d is the output of CSB. The CSB is similar
to introduce holes in dilated convolution. The difference is that
we also consider the local neighbors. In this way, the local
patterns and global diagram are simultaneously guaranteed.
1st-order triplet. After CSB, we design a 1st-order triplet

and 2nd-order triplet to model inter-dependencies in different
dimensions to find out regions/patterns that should be em-
phasized in contextual features. As the name implies, each
attention triplet consists of three branches which are respon-
sible for capturing cross-dimension interaction between the
(C, H), (C, W ), and (H , W ) dimensions of the input tensor,
respectively. By exploiting the inter-dependencies between the
channel dimension and the spatial dimension, our network can
effectively focus on informative contextual features.
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In the 1st-order triplet, we take channel-wise attention as
an example, we first aggregate spatial information of (H , W )
dimension into a channel-wise descriptor by using average-
pooling operation on each channel. Then, the descriptor is
forwarded to a shared multi-layer perception (MLP) to
produce channel-wise attention maps,

A1st

cha = η(MLP(ψ(FCSB
d ))), (12)

where η is the sigmoid function, ψ denotes global average
pooling operation, A1st

cha denotes the channel-wise attention
map. Then we can get channel-wise attentive features F1st

cha

by multiplication between FCSB
d and A1st

cha. Similarly, we
can obtain the row-wise attentive features F1st

row from (C, H)
dimension and the column-wise attentive features F1st

col from
(C, W ) dimension. Then we add 1st-order triplet attentive
features and FCSB

d ,

F1st

d = F1st

cha + F1st

row + F1st

col + FCSB
d , (13)

where F1st

d denotes the output of the 1st-order triplet.
2nd-order triplet. Recent works [54], [26] have shown that

second-order statistics in CNNs can provide different infor-
mation for discriminative representations from the first-order
ones. Therefore, we also propose a 2nd-order triplet to learn
feature inter-dependencies by cross-dimension interaction like
in the 1st-order triplet. In the 2nd-order triplet, we still use
channel-wise attention ((H , W ) dimension) as an example.
Specifically, we first apply average-pooling operationM along
the channel axis on F1st

d ∈ RC×H×W to generate an efficient
feature descriptor. Based on the feature descriptor, we apply a
convolution layer and a sigmoid function to generate a spatial
attention map A2nd

cha which encodes where to emphasize or sup-
press. Finally, we perform an multiplication operation between
A2nd

cha and F1st

d to obtain spatial-wise attentive features F2nd

cha .
The whole process can be expressed as:

F2nd

cha =A2nd

cha ×F1st

d ,

A2nd

cha =η(C1×1(M(F1st

d ))),
(14)

where η is the sigmoid function. Similarly, we generate the
row-to-row features F2nd

row from (C, H) dimension and the
column-to-column features F2nd

col from (C, W ) dimension.
Then we add 2nd-order triplet attentive features and F1st

d ,

F2nd

d = F2nd

cha + F2nd

row + F2nd

col + F1st

d , (15)

Finally, we can obtain the output of d-th MCAB by,

Fd = Fc
d × η(C3×3(F2nd

d )) + Fd−1. (16)

By capturing the inter-dependencies in different dimensions,
the attention branch is able to focus on more informative
features and enhance discriminative learning ability.

C. Refined Attention Block

As shown in Figure 2(c), our refined attention block (RAB)
is proposed to refine a coarse SR result to a more fine-detailed
one. The RAB can be simply expressed as,

ISR
2 = ISR

1 × η(C1×1(δ(C3×3(ISR
1 )))) + ISR

1 , (17)

Note that even though it looks very simple, RAB is essential
for reconstructing a visually pleasant SR image with fine
details. This is because the information in LR space is limited,
and RAB can compensate for the lacked important local
information by distilling features in HR space.

D. Implementation Details

We implement our model with Pytorch and run experiments
with an NVIDIA Titan V GPU. For training, we use 48×48
RGB patches cropped from LR image as input and its corre-
sponding HR patches as ground truth. Following [1], we pre-
process all the images by subtracting the mean RGB value of
the DIV2K dataset [55] and augment the training data with
random horizontal flips and 90◦ rotations. We train our model
with ADAM optimizer [56] by setting β1 = 0.9, β2 = 0.999.
The mini-batch size is set to 16. The learning rate is initialized
as 0.0001 and decreases to half every 200 epochs. And the
number of total epochs is 1000. The balancing parameters w1

and w2 in Equation 6 are empirically set to 1.

E. Discussions

1) Difference to RDN [2]: Inspired by RDN [2], we in-
troduce dense connection into our MCAB to fully utilize the
features information from each DRB in MCAB. There are
some differences between RDN [2] and our TSAN. First,
RDN [2] mainly cascades convolution layers to enlarge the
receptive field, while our TSAN is built based on DRB which
can simultaneously distill features with different receptive
fields and different context characteristics. Second, RDN [2]
focuses on how to exploit and use hierarchical features without
considering how to distinguish different feature information.
While our TSAN can learn the attention maps used for em-
phasizing informative contextual features by considering long-
range feature correlations in spatial and channel dimensions.
Third, RDN belongs to post-upsampling methods which pay
attention to exploiting the features information from LR space,
while our TSAN is designed to utilize features from LR and
HR space simultaneously.

2) Difference to RCAN [6]: We summarize the main dif-
ferences between RCAN [6] and our TSAN. First, RCAN [6]
consists of several residual groups with long skip connections.
While, TSAN stack DRBs in a dense connection manner, so
each DRB in MCAB has access to all the previous DRBs’ out-
put and could fully utilize them to further distill higher-level
contextual features. Second, RCAN [6] only extract local in-
formation for reconstructing. While TSAN considers non-local
operations in CSB to learn long-range feature correlations.
Third, RCAN [6] only considers channel attention based first-
order feature statistics to enhance the discriminative ability
of the network. While our TSAN learns inter-dependencies
between different dimensions based on first-order and second-
order features.

3) Difference to MSRN [41]: MSRN [41] proposes a multi-
scale residual block (MSRB) to detect image features and
fuse different scales. There are some main differences between
MSRB in MSRN [41] and our proposed DRB. First, we utilize
the dilated convolution to widen the receptive field without
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additive parameters, which maintains the lightweight structure
of DRB. Second, MSRB is adopted to detect the image
features at different scales, while we concatenate the outputs
of four dilated convolution in DRB, which can simultaneously
distill features with different receptive fields and different
scales features.

4) Difference to MCERN [57]: MCERN [57] proposes a
multi-context block and enhanced reconstruction network for
SISR in a coarse-to-fine manner. There are some differences
between MCERN [57] and our TSAN. First, MCERN [57]
only focuses on how to extract rich contextual information,
while our TSAN considers informative features based on
MCERN [57]. Second, MCERN [57] only utilize local in-
formation for SISR, while TSAN can guarantee local patterns
and global diagram with CSB.

5) Difference to SAN [26]: SAN [26] introduces second-
order attention operations to learn feature inter-dependencies
by global covariance pooling for more discriminative repre-
sentations in image super-resolution. The main differences
between SAN [26] and our TSAN lie in the following aspects.
First, SAN [26] pays attention to make full use of the
information from the original LR images, while our TSAN
values the features information of the LR space and the
HR space, and processes the obtained features information
in a coarse to fine manner. Second, SAN [26] presents a
non-locally enhanced residual group structure based on [58]
to capture long-distance contextual information. While we
propose a simple and flexible CSB to exploit long-range
feature correlation, and we use the triplet structure to capture
cross-dimension interaction between the (C, H), (C, W ), and
(H , W ) dimensions.

IV. EXPERIMENT

To verify the effectiveness of the proposed method, we
evaluate our SR results with two metrics, i.e., peak signal-
to-noise ratio (PSNR) (unit: dB) and structural similarity
(SSIM) [59] on Y channel of transformed YCbCr space.
For the convenience of a fair comparison, we follow the
experiment setup of existing methods. To specify, we use the
high-quality DIV2K [55] dataset for training and take four test
sets - Set5 [60], Set14 [61], BSDS100 [62], and Urban100 [7]
for evaluation.

(a) Original (b) Noisy (c) TSAN
Fig. 4. Qualitative comparisons of color image denoising. The second column
shows the noisy images with noise level 25. TSAN recovers fine local details,
which is mainly contributed by the abundant hierarchical and contextual
features extracted by our proposed DRB. Best viewed in zoom in.

TABLE I
DRB ARCHITECTURE ANALYSIS WITH ×2 SCALE FACTOR. “CASCADED”

AND “PARALLEL” DENOTE THE CASCADED ARCHITECTURE AND THE
PARALLEL ARCHITECTURE, RESPECTIVELY. s = 1 MEANS THE DILATION

RATE OF ALL DILATED CONVOLUTIONS IN THE DRB IS 1.

Set5 [60] Set14 [61] BSDS100 [62] Urban100 [7]
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Cascaded 38.14/0.9611 33.78/0.9191 32.27/0.9009 32.50/0.9322
Parallel 38.10/0.9609 33.79/0.9189 32.25/0.9004 32.44/0.9311
DRB(s = 1) 38.17/0.9609 33.80/0.9186 32.27/0.9006 32.54/0.9328
DRB 38.22/0.9613 33.84/0.9196 32.32/0.9015 32.77/0.9345

A. Effectiveness of Key Components in MCAB

MCAB contains two branches, i.e., the contextual feature
extraction branch and the attention branch.

1) Effectiveness of the Contextual Feature Extraction
Branch: The core of this branch is DRB. To verify the
effectiveness of the DRB structure, we make three sets of
experiments. In the first set of experiments, we replace our
DRB structure with the cascaded structure (see Figure 3(a))
or the parallel structure (see Figure 3(b)) and evaluate their
performances on the four datasets. For a fair comparison, we
set d = 3, e = 6, and s = 1 (that means the dilation rate of
all dilated convolutions in the DRB is 1, there are 6 DRBs in
each MCAB, and there are 3 MCABs in the whole network).
Note that the numbers of these three network parameters are
the same. The results are summarized in Table I, from which
we can claim that the proposed DRB structure performs best
under the same parameters. Such an observation demonstrates
that the multiple branches structure in the DRB is more
efficient than cascading and parallel structures. This is because
DRB can incorporate the advantages of both the cascading
and parallel strategies to simultaneously distill features with
different receptive fields and different context characteristics.

To demonstrate the importance of different dilated con-
volution with the dilation rate, we conduct a second set of
experiments to compare with a variant structure in which we
set the dilation rate s of all dilated convolutions in the DRB to
1 (DRB(s=1)). Similarly, we set d = 3 and e = 6. The PSNR
and SSIM in Table I show that our setting of dilation rate
achieves better results on test datasets. This suggests applying
different dilated convolution with the dilation rate can obtain
a larger receptive field for SISR.

In order to further verify the validity of our proposed
DRB structure, we use our network at LR-stage for other
low-level computer vision tasks. We provide the results of
image denoising in Figure 4. Apparently, our proposed TSAN
produces a good result on image denoising because our DRB
structure is able to extract abundant hierarchical and contextual
features for image reconstruction.

TABLE II
THE ABLATION STUDY OF MCAB COMPONENTS. THE RESULTS ARE

EVALUATED ON SET5 [60] FOR A SCALE FACTOR OF ×3.

w/o CSB w/o 1st- 1st-order w/o 2nd- 2nd-order TSANorder triplet triplet HW order triplet triplet HW
PSNR 34.55 34.57 34.60 34.51 34.57 34.64
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The above three experiments demonstrate that our proposed
DRB is an effective structure that can distill features with
different contextual characteristics by two branches and extract
features in different receptive fields by two cascaded convolu-
tion layers of each branch. And multiple DRBs are combined
to integrate contextual features of different levels adaptively.

2) Effectiveness of the Attention Branch: the attention
branch consists of three important components, including
CSB, 1st-order triplet, and 2nd-order triplet. To verify the
effectiveness of different components, we compare TSAN
without using CSB, 1st-order triplet, and 2nd-order triplet
in Table II. Further, to demonstrate the importance of inter-
dependencies between the channel dimension and the spatial
dimension, we remove cross-dimension interaction between
the (C, H) and (C, W ) dimensions in 1st-order triplet and
2nd-order triplet, and only retain the interaction of (H , W )
dimension, which denoted as 1st-order triplet HW, and 2nd-
order triplet HW. It can be found that the CSB contributes to
performance improvement. This is mainly because CSB pro-
vides local and non-local information to the network, capturing
short-distance and long-distance features simultaneously. We
can also learn that 1st-order and 2nd-order triplet components
contribute to the network ability obviously. This indicates
discriminative learning with cross-dimension interaction plays
an important role in determining the performance.

B. Effectiveness with Different Number of MCABs

We set different numbers of MCABs in our proposed TSAN
and evaluate the performances on different datasets. As shown
in Table III, the values of both PSNR and SSIM for our
network get better as the number of MCABs increases. Such
an observation is consistent with what we expect since the
generalization ability will also increase when the number
of parameters of our network will go up. As a trade-off
between the performance and the complexity of the network,
we determine to use three MCABs, which provides strong
reconstruction ability and requires not many parameters (<
5.0M).

C. Effectiveness of RAB

To verify that RAB can further improve the reconstruction
effect, we conduct a group of experiments without RAB. For
a fair comparison, we move the RAB to the front of the
upsampling to ensure that the depth of TSAN w/o and w/
RAB are the same. The results are summarized in Table IV.
From the results, we can clearly observe that the performance
with RAB works better than that without RAB, which suggests

TABLE III
MCABS ANALYSIS BY VARYING THE NUMBER OF MCABS IN TSAN. THE

SCALE FACTOR IS ×2.

number of Set5 [60] Set14 [61] BSDS100 [62] Urban100 [7]
MCABs PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

1 38.01/0.9604 33.55/0.9168 32.13/0.8992 31.92/0.9261
2 38.12/0.9609 33.74/0.9188 32.23/0.9003 32.27/0.9296
3 38.22/0.9613 33.84/0.9196 32.32/0.9015 32.77/0.9345
4 38.23/0.9614 33.87/0.9198 32.35/0.9016 32.82/0.9348

TABLE IV
THE EFFECTIVENESS OF RAB. FOR A FAIR COMPARISON, WE MOVE THE
RAB TO THE FRONT OF THE UPSAMPLING TO ENSURE THAT THE DEPTH
OF TSAN W/O AND W/ RAB ARE THE SAME. THE RESULTS EVALUATED

FOR A SCALE FACTOR OF ×2.

TSAN Set5 [60] Set14 [61] BSDS100 [62] Urban100 [7]
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

w/o RAB 38.14/0.9611 33.75/0.9192 32.29/0.9010 32.58/0.9327
w/ RAB† 38.10/0.9610 33.79/0.9193 32.26/0.9007 32.49/0.9320
w/ RAB 38.22/0.9613 33.84/0.9196 32.32/0.9015 32.77/0.9345

that our RAB is able to refine a coarse HR result to a more
detailed one since it can continue to extract useful features
from HR space. We also visualize the visual effects of TSAN
w/o and w/ RAB in Figure 5. In this example, our RAB
is able to correct the direction for black lines. In order to
further prove the effectiveness of our coarse-to-fine method,
we designed a variant w/ RAB† that sets the parameters w1

in the objective function to 0 and w2 to 1. From Table IV,
it can be found that w1 equal to zero will have a negative
impact on the reconstruction results. The reason behind this
is that the lack of intermediate coarse results reconstructed
from the LR space makes the training process difficult. This
demonstrates that multiple MCABs can extract rich attentive
contextual features with cross-dimension interaction to obtain
a good initial coarse SR result, then our proposed RAB can
further improve the coarse SR image into a fine SR image by
using LR and HR space information simultaneously.

D. Comparisons with State-of-the-art Methods

We compare our proposed TSAN with eight state-of-
the-art light-weighted methods (with < 6M parameters):
LapSRN [45], CARN [42], SRMDNF [63], NLRN [64],
MSRN [41], FRSR [3], OISR-RK2 [4], and LattienNet [65].
We summarize the quantitative comparisons for ×2, ×3, and
×4 in Table V. As we can see, our TSAN achieves excellent
performance on different datasets and different upsampling
scales. We also visualize several examples with different
upsampling scales in Figures 7, 8, and 9. Obviously, the SR
images generated by other methods exhibit visible artifacts,
while our proposed TSAN is able to generate a more visually
pleasant image with clean details and sharp edges. This can
be explained by the fact that rich attentive contextual features
with long-range dependencies extracted by multiple MCABs

(a) GT (b) w/ RAB (c) w/o RAB

Fig. 5. Visual comparisons of the effectiveness of RAB on barbara from
Set14 [61] with scale factor ×2.
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TABLE V
PERFORMANCE COMPARISON TO OTHER 8 STATE-OF-THE-ART METHODS WITH THE LIGHT-WEIGHTED MODEL (< 6.0M PARAMETERS). THE BEST AND

SECOND BEST RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINED.

Scale Method Set5 [60] Set14 [61] BSDS100 [62] Urban100 [7]
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

Bicubic 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403
LapSRN [45] (CVPR’17) 37.52/0.9591 33.08/0.9130 31.80/0.8950 30.41/0.9101
CARN [42] (ECCV’18) 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.51/0.9312
SRMDNF [63] (CVPR’18) 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204
NLRN [64] (NIPS’18) 38.00/0.9603 33.46/0.9195 32.19/0.8992 31.82/0.9249
MSRN [41] (ECCV’18) 38.08/0.9605 33.74/0.9170 32.23/0.9013 32.22/0.9326
FRSR [3] (CVPR’19) 37.95v0.9594 33.45/0.9195 32.17/0.8991 32.23/0.9290
OISR-RK2 [4] (CVPR’19) 38.11/0.9609 33.80/0.9193 32.26/0.9006 32.48/0.9317
LattienNet [65] (ECCV’20) 38.15/0.9610 33.78/0.9193 32.25/0.9005 32.43/0.9302
TSAN 38.22/0.9613 33.84/0.9196 32.32/0.9015 32.77/0.9345

×3

Bicubic 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349
LapSRN [45] (CVPR’17) 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280
CARN [42] (ECCV’18) 34.29/0.9255 30.29/0.8407 29.06/0.8034 27.38/0.8404
SRMDNF [63] (CVPR’18) 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398
NLRN [64] (NIPS’18) 34.27/0.9266 30.16/0.8374 29.06/0.8026 27.93/0.8453
MSRN [41] (ECCV’18) 34.38/0.9262 30.34/0.8395 29.08/0.8041 28.08/0.8554
FRSR [3] (CVPR’19) 34.38/0.9262 30.27/0.8411 29.11/0.8050 28.33/0.8556
OISR-RK2 [4] (CVPR’19) 34.55/0.9281 30.46/0.8443 29.18/0.8075 28.50/0.8597
LattienNet [65] (ECCV’20) 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538
TSAN 34.64/0.9282 30.52/0.8454 29.20/0.8080 28.55/0.8602

×4

Bicubic 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577
LapSRN [45] (CVPR’17) 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560
CARN [42] (ECCV’18) 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.63/0.7688
SRMDNF [63] (CVPR’18) 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731
NLRN [64] (NIPS’18) 31.92/0.8916 28.36/0.7745 27.48/0.7306 25.79/0.7729
MSRN [41] (ECCV’18) 32.07/0.8903 28.60/0.7751 27.52/0.7273 26.04/0.7896
FRSR [3] (CVPR’19) 32.22/0.8950 28.64/0.7830 27.60/0.7370 26.21/0.7910
OISR-RK2 [4] (CVPR’19) 32.35/0.8970 28.72/0.7843 27.66/0.7390 26.37/0.7953
LattienNet [65] (ECCV’20) 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873
TSAN 32.40/0.8975 28.73/0.7847 27.67/0.7398 26.39/0.7955

TABLE VI
PERFORMANCE COMPARISON TO 8 STATE-OF-THE-ART METHODS WITH THE HEAVY-WEIGHTED MODEL. THE BEST AND SECOND BEST RESULTS ARE

HIGHLIGHTED IN BOLD AND UNDERLINED.

Scales Methods Set5 [60] Set14 [61] BSDS100 [62] Urban100 [7]
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

EDSR [1] (CVPRW’17) 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351
RDN [2] (CVPR’18) 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353
DBPN [46] (CVPR’18) 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324
RCAN [6] (ECCV’18) 38.27/0.9614 34.12/0.9216 32.40/0.9025 33.34/0.9384
RNAN [66] (ICLR’19) 38.17/0.9611 33.87/0.9207 32.32/0.9014 32.73/0.9340
SAN [26] (CVPR’19) 38.28/0.9618 34.07/0.9213 32.35/0.9019 33.10/0.9370
Pan [67] (AAAI’20) 38.26/0.9614 33.99/0.9200 32.37/0.9020 33.09/0.9365
HAN [68] (ECCV’20) 38.27/0.9614 34.16/0.9217 32.41/0.9027 33.35/0.9385
TSAN 38.22/0.9613 33.84/0.9196 32.32/0.9015 32.77/0.9345
TSAN-L 38.30/0.9619 34.17/0.9218 32.40/0.9026 33.45/0.9387

×3

EDSR [1] (CVPRW’17) 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653
RDN [2] (CVPR’18) 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653
DBPN [46] (CVPR’18) –/– –/– –/– –/–
RCAN [6] (ECCV’18) 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702
RNAN [66] (ICLR’19) 34.65/0.9288 30.55/0.8465 29.25/0.8089 28.74/0.8645
SAN [26] (CVPR’19) 34.75/0.9300 30.59/0.8476 29.33/0.8112 28.93/0.8671
Pan [67] (AAAI’20) 34.75/0.9298 30.61/0.8466 29.29/0.8102 28.97/0.8683
HAN [68] (ECCV’20) 34.75/0.9299 30.67/0.8483 29.32/0.8110 29.10/0.8705
TSAN 34.64/0.9282 30.52/0.8454 29.20/0.8080 28.55/0.8602
TSAN-L 34.80/0.9301 30.65/0.8486 29.34/0.8114 29.17/0.8720

×4

EDSR [1] (CVPRW’17) 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033
RDN [2] (CVPR’18) 32.47/0.8990 28.81/0.7871 27.72/0.7417 26.61/0.8028
DBPN [46] (CVPR’18) 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946
RCAN [6] (ECCV’18) 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087
RNAN [66] (ICLR’19) 32.49/0.8982 28.83/0.7878 27.72/0.7421 26.61/0.8023
SAN [26] (CVPR’19) 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8086
Pan [67] (AAAI’20) 32.56/0.8995 28.80/0.7882 27.73/0.7422 26.72/0.8053
HAN [68] (ECCV’20) 32.64/0.9002 28.90/0.7890 27.80/0.7442 26.85/0.8094
TSAN 32.40/0.8975 28.73/0.7847 27.67/0.7398 26.39/0.7955
TSAN-L 32.65/0.9004 28.91/0.7888 27.81/0.7443 26.95/0.8110
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Fig. 6. PSNR performance versus number of parameters. (a) The results are
evaluated on Set5 for a scale factor of ×2. (b) The results are evaluated on
Urban100 for a scale factor of ×4. Our TSAN and TSAN-L has a better
tradeoff between performance and model size.

in the LR space ensure a good initial coarse SR result, and
then the SR result can be further improved by RAB.

To further prove the effectiveness of the proposed model,
we increase the number of MCAB to 13 (denoted as TSAN-L)
to fairly compare with some methods with large parameters
or heavy computations. We compare TSAN and TSAN-L
with eight current state-of-the-art heavy-weight methods in
Table VI, i.e., EDSR [1], RDN [2], DBPN [46], RCAN [6],
RNAN [66], SAN [26], Pan [67], and HAN [68]. We can
see that our proposed TSAN still achieves comparable per-
formance, and TSAN-L performs favorably against the state-
of-the-art methods. For example, the proposed TSAN gains
0.11dB higher than EDSR [1] on Set5 [60] for ×2 scale, and
the TSAN-L gains 0.13dB, 0.16dB, and 0.10dB higher than
state-of-the-art methods RCAN [6], SAN [26], and Pan [67]
on Urban100 [7] for ×4 scale, respectively. This observation
suggests that our TSAN with cross-dimension interaction can
make better use of more informative contextual features to
boost reconstruction performance. We also visualize several
examples with different upsampling scales in Figures 10, 11,
and 12. As shown, most compared SR methods cannot recover
the grids of buildings accurately and suffer from unpleasant
blurring artifacts. In contrast, our TSAN-L obtains clearer de-
tails and reconstructs sharper high-frequency textures. Again,
this strongly demonstrates the superiority of our method.

We also compare the tradeoff between the performance and
the number of network parameters from our TSAN network
and existing methods. Figure 6 shows the PSNR performances
of 12 models versus the number of parameters, where the
results are evaluated with Set5 [60] and Urban100 [7] datasets
for 2× and 4× upscaling factors, respectively. We can find that
our TSAN and TSAN-L network significantly outperforms the
relatively small models across all datasets and scales. More-
over, our TSAN-L network performs better than EDSR [1] and
RDN [2] across two scales but with about 65% and 34% fewer
parameters on average, respectively. Furthermore, compared
with RCAN [6] and SAN [26] on two upscaling factors, our
TSAN-L has fewer parameters and achieves higher PSNR. We
further compute the FLOPs and provide the speed by assuming
that the size of LR image is 48 × 48 and the scale factor is
2. For a fair comparison, all methods are tested on the same
CPU. From Table VII, we can see that our network has fewer

TABLE VII
THE FLOPS AND INFERENCE TIME COMPARISONS OF OUR

METHOD WITH FIVE STATE-OF-THE-ART NETWORKS.

EDSR [1] MSRN [41] RCAN [6] SAN [26] HAN [68] TSAN
FLOPs (G) 115.78 13.67 36.67 30.04 150.99 10.11
Time (s) 17.00 2.57 9.56 10.26 26.82 2.34

FLOPs and faster inference speed than compared approaches.
These comparisons indicate that our proposed network has a
better tradeoff between performance and model size.

V. CONCLUSION

In this paper, we propose a novel and light-weighted TSAN
for SISR in a coarse-to-fine fashion to utilize the attentive
contextual information with cross-dimension interaction and
emphasize the reconstruction process on both LR and SR
space. The DRB with the well designed compact structure can
increase the receptive field and get more contextual features.
The MCAB can effectively extract attentive contextual features
by exploiting inter-dependencies between different dimensions
to obtain the coarse result. Also, an RAB is proposed to focus
on extracting essential HR space features after upsampling to
refine the coarse result. Extensive evaluations on the bench-
mark datasets have demonstrated the efficacy of our proposed
TSAN in terms of metric accuracy and visual effects.
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BIC LapSRN [45] CARN [42] SRMDNF [63] NLRN [64]
(23.45/0.8528) (26.69/0.9396) (29.19/0.9638) (27.95/0.9550) (29.15/0.9622)

Ground Truth MSRN [41] FRSR [3] OISR [4] TSAN GT
(29.84/0.9681) (30.14/0.9689) (29.96/0.9695) (30.81/0.9729) (PSNR/SSIM)
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(35.12/0.9920) (35.04/0.9920) (35.21/0.9922) (35.77/0.9932) (PSNR/SSIM)

Fig. 7. Visual comparison between our TSAN and other light-weighted methods on img062 from Urban100 [7] and ppt from Set14 [61] with scale ×2.

BIC LapSRN [45] CARN [42] SRMDNF [63] NLRN [64]
(22.83/0.7840) (24.80/0.8815) (26.13/0.9083) (25.33/0.8953) (25.91/0.9055)

Ground Truth MSRN [41] FRSR [3] OISR [4] TSAN GT
(25.97/0.9086) (25.71/0.9051) (25.97/0.9090) (26.55/0.9161) (PSNR/SSIM)

BIC LapSRN [45] CARN [42] SRMDNF [63] NLRN [64]
(26.63/0.7953) (29.87/0.8595) (30.24/0.8657) (30.01/0.8641) (30.40/0.8665)

Ground Truth MSRN [41] FRSR [3] OISR [4] TSAN GT
(30.40/0.8666) (30.31/0.8660) (30.42/0.8671) (30.56/0.8684) (PSNR/SSIM)

Fig. 8. Visual comparison between our TSAN and other light-weighted methods on img004 from Urban100 [7] and zebra from Set14 [61] with scale ×3.
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(38.17/0.9750) (38.16/0.9738) (38.24/0.9755) (38.62/0.9773) (PSNR/SSIM)

Fig. 9. Visual comparison between our TSAN and other light-weighted methods on monarch from Set14 [61] and img081 from Urban100 [7] with scale ×4.

BIC RDN [2] RCAN [6] RNAN [5]
(25.24/0.8343) (28.99/0.9417) (30.59/0.9515) (29.56/0.9436)

Ground Truth SAN [26] Pan [67] TSAN GT
(29.01/0.9414) (29.51/0.9461) (31.03/0.9540) (PSNR/SSIM)

BIC RDN [2] RCAN [6] RNAN [5]
(28.86/0.9267) (34.62/0.9733) (34.77/0.9741) (34.54/0.9731)

Ground Truth SAN [26] Pan [67] TSAN-L GT
(34.93/0.9744) (34.79/0.9471) (35.03/0.9748) (PSNR/SSIM)

Fig. 10. Visual comparison between our TSAN-L and several heavy-weighted methods on img046 from Urban100 [7] and 24077 from BSDS100 [62] with
scale ×2.
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Fig. 11. Visual comparison between our TSAN-L and several heavy-weighted methods on img012 from Urban100 [7] and img044 from Urban100 [7] with
scale ×3.

BIC RDN [2] RCAN [6] RNAN [5]
(30.88/0.8560) (34.32/0.9306) (34.59/0.9347) (34.78/0.9351)

Ground Truth SAN [26] Pan [67] TSAN GT
(34.51/0.9284) (34.63/0.9333) (34.85/0.9382) (PSNR/SSIM)

BIC RDN [2] RCAN [6] RNAN [5]
(27.72/0.7199) (30.15/0.8012) (30.11/0.8011) (30.16/0.8008)

Ground Truth SAN [26] Pan [67] TSAN-L GT
(30.09/0.8004) (30.08/0.7998) (30.40/0.8054) (PSNR/SSIM)

Fig. 12. Visual comparison between our TSAN-L and several heavy-weighted methods on img009 from Urban100 [7] and img021 from Urban100 [7] with
scale ×4.
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